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We characterize a nonlinear full invariant of compact Banach-space maps: Let (X, ‖.‖)
and (Y, ‖.‖) be two Banach spaces and PC (X, Y ) be all compact maps which map
(X, ‖.‖) to (Y, ‖.‖). Then each weak operator-topology subseries-convergent series∑

i Pi in Pc(X, Y ) is also uniform-topology subseries-convergent iff each bounded map
from (X, ‖.‖) to (l1, ‖.‖1) is a compact map. The necessary condition for each weak
operator-topology subseries-convergent series

∑
i Pi in PC (X, Y ) to be also uniform-

topology subseries-convergent is that (X, ‖.‖) and (X
′
, ‖.‖) both contain no copy of c0.

This necessary condition is not sufficient.

KEY WORDS: Banach space; compact map; full invariant.
PACS: 02.10 By, 02.10 Gd

1. INTRODUCTION

A map Q : (X, ‖.‖) → (Y, ‖.‖) is said to be a bounded (or compact, respec-
tively) map if for each bounded subset B of (X, ‖.‖), Q(B) is a bounded (or
compact, respectively) subset of (Y, ‖.‖).

Let (X, ‖.‖), (Y, ‖.‖) be two Banach spaces and Pc(X, Y ) the set of compact
maps from (X, ‖.‖) to (Y, ‖.‖), P0(X, Y ) the set of continuous compact polynomial
operators from (X, ‖.‖) to (Y, ‖.‖), K(X, Y ) the set of continuous linear compact
operator from (X, ‖.‖) to (Y, ‖.‖).

As is known, studying the invariants is a crucial topic in Mathematics and
Physics. Li Ronglu, Cui Chengri, Cho Minhyung, Wu Junde and Lu Shijie proved
several interesting linear full invariants (Li et al., 1998; Wu and Li, 1999; Wu and
Lu, 2002). In order to study nonlinear map-valued quantum measure theory, now,
we characterize a nonlinear full invariant.
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Let WOT, SOT and UOT be the weak operator topology, strong operator
topology and uniform operator topology on PC(X, Y ), respectively, i.e. limα Pα =
0 in the WOT ⇐⇒ for each x ∈ X, y

′ ∈ Y
′
, limα < Tαx, y

′
>= 0; limα Tα = 0 in

the SOT ⇐⇒ for each x ∈ X, limα Tα(x) = 0; limα Tα = 0 in the UOT ⇐⇒ for
each bounded subset A of X, limα Tαx = 0 uniformly with respect to x ∈ A.

It is clear that WOT ⊆ SOT ⊆ UOT.
Let τ0 be a topology on PC(X, Y ). A series

∑
i Pi in PC(X, Y ) is said to be τ0-

subseries convergent if for each sequence {kj } in N, there exists an P0 ∈ PC(X, Y )
such that the series

∑
j Pkj

is τ0-converge to P0.
If m0 denotes the space of all scalar sequence (tj ) such that {tj : j ∈ N}

is a finite set. It is clear that
∑

j Pj is τ0-subseries convergent is equivalent to
for each (tj ) ∈ m0 there exists a P0 ∈ PC(X, Y ) such that the series

∑
j tjPj is

τ0-convergent to P0.

Definition 1. A property of PC(X, Y ) is said to be a full invariant of PC(X, Y ),
if the property holds for some topology τ0 of PC(X, Y ) between WOT and UOT,
then it also holds for all topologies τ of PC(X, Y ) between WOT and UOT.

In order to prove our conclusion, we first need the following lemmas:

Lemma 1. (Wilansky, 1978) (l1, σ (l1,m0)), (l1, σ (l1, l∞)) and (l1, ‖.‖1) have
the same bounded sets.

Lemma 2. (Wu and Li, 2000) If (X, τ1) is a barrelled locally convex space, then
the following are equivalent:

(1) (X
′
, β(X

′
, X)) contains no copy of (l∞, ‖.‖∞).

(2) (X
′
, β(X

′
, X)) contains no copy of (c0, ‖.‖∞).

(3) Each continuous linear operator T : (X, τ1) → (l1, ‖.‖1) is a compact
operator.

2. MAIN THEOREM AND PROOF

Now, we prove the following main result:

Theorem 1. Let (X, ‖.‖) and (Y, ‖.‖) be two Banach spaces and Y 
= 0. Then
the subseries convergent property is a full invariant of PC(X, Y ) iff each bounded
map T : (X, ‖.‖) → (l1, ‖.‖1) is a compact map.

Proof: Sufficiency. Without loss generality, let the series
∑

i Pi in PC(X, Y ) be
weak operator topology subseries convergent. It follows from (Kalton, 1980) that∑

j Pj must be strong operator topology subseries convergent. Now, we show that
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if each bounded map T : (X, ‖.‖) → (l1, ‖.‖1) is a compact map, then
∑

j Pj is
uniform topology subseries convergent.

If not, there exists a subsequence {kj } of N, a bounded subset B of (X, ‖.‖) and
P0 ∈ PC(X, Y ) such that for each x ∈ B, the series

∑
j Pkj

x is norm convergent
to P0x, but

∑
j Pkj

x does not converge to P0x uniformly with respect to x ∈ B.
Thus, there is an ε0 > 0 such that for each p ∈ N, there are m, n ∈ N, m ≥ n > p

and x ∈ B satisfying ∥∥∥∥∥
m∑

j=n

Pkj
x

∥∥∥∥∥ ≥ ε0. (1)

It follows from (1) inductively that we can obtain two sequences n1 ≤ m1 <

n2 ≤ m2 < . . . < nq ≤ mq < . . . in N and xq ∈ B such that∥∥∥∥∥
mq∑

j=nq

Pkj
xq

∥∥∥∥∥ ≥ ε0, q ∈ N.

By the Hahn–Banach theorem, there is a sequence {y ′
q} of Y ′ such that for each

q ∈ N, ‖y ′
q‖ ≤ 1 and

y
′
q


 mq∑

j=nq

Pkj
xq


 ≥ ε0. (2)

Let Y0 be the linear closed hull of {Pjxn : j, n ∈ N} in (Y, ‖.‖). Then (Y0, ‖.‖)
is a separable subspace of (X, ‖.‖) . Thus, we can obtain a subsequence {y ′

qi
} of

{y ′
q}, without loss of generality, we may assume that {y ′

qi
} is just {y ′

q}, and y
′
0 ∈ Y

′

with ‖y ′
0‖ ≤ 1 such that for each y ∈ Y0, limq y

′
q(y) = y

′
0(y) (Kothe, 1969).

For P ∈ PC(X, Y ), we show that if {Pxn} ⊆ Y0, then

lim
q

sup
n

{|(y ′
q − y

′
0)Pxn|} = 0.

Otherwise, there exist a subsequence {y ′
ql
} of {y ′

q} , a sequence {xkl
} ⊆ {xn} and

ε1 > 0 such that

|(y ′
ql

− y
′
0)Pxkl

| ≥ ε1, l ∈ N. (3)

Since P ∈ PC(X, Y ), so the set {Pxkl
} is relatively compact in (Y, ‖.‖). It

follows from {Pxkl
} ⊆ Y0 that {Pxkl

} is a relatively compact subset of the norm
space (Y0, ‖.‖), and is also a relatively sequentially compact subset of (Y0, ‖.‖).
Thus, without loss of generality, we may assume that there exists a y0 ∈ Y0 such
that {‖Pxkl

− y0‖} converges to 0. Note that

|(y ′
ql

− y ′
0)Pxkl

| ≤ |(y ′
ql

− y ′
0)(Pxkl

− y0)| + |(y ′
ql

− y ′
0)y0|

≤ ‖y ′
ql

− y ′
0‖‖Pxkl

− y0‖ + |(y ′
ql

− y ′
0)y0|.
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It follows from ‖y ′
ql

− y ′
0‖ ≤ 2, {‖Pxkl

− y0‖} → 0 and {y ′
ql

(y0)} → y ′
0(y0) that

lim
l

(y ′
ql

− y ′
0)Pxkl

= 0.

This contradicts to (3). So the conclusion holds.
Furthermore, since the series

∑
j Pj is strong operator topology subseries

convergent, for each (tj ) ∈ m0, there exists a P ∈ PC(X, Y ) such that
∑

j tjPj is
strong operator topology convergent to P . So for each y ′ ∈ Y ′ and x ∈ X,∑

j

tj 〈Pjx, y ′〉 = 〈Px, y ′〉.

It is easy to prove that (〈Pix, y ′〉)∞i=1 ∈ l1. It follows from
∑

j tj 〈Pjx, y ′〉 =
〈Px, y ′〉 that the map: x → (〈Pix, y ′〉)∞i=1 is a bounded map: (X, ‖.‖) →
(l1, σ (l1,m0)) and hence from Lemma 1 that it is also a bounded map of (X, ‖.‖) →
(l1, ‖.‖1). Thus, the condition in Theorem 1 shows that {(〈Pix, y ′〉)∞i=1 : x ∈ B}
is a relatively compact subset of (l1, ‖.‖1). So, it follows from the character-
istic of the compact subsets of (l1, ‖.‖1) that the series

∑∞
j=1 tj 〈Pjx, y ′〉 con-

verges to 〈Px, y ′〉 uniformly with respect to x ∈ B. Now, we consider the infi-
nite matrix [

∑mj

i=nj
y ′

kPi]kj . For each j ∈ N, note that
∑mj

i=nj
Pi ∈ PC(X, Y ) and

{∑mj

i=nj
Pixn} ⊆ Y0, we have

lim
k

sup
n

∣∣∣∣∣
mj∑

i=nj

(y ′
k − y ′

0)Pi(xn)

∣∣∣∣∣ = 0.

For each strictly increasing sequence of positive integers {jr}, since the se-
ries

∑
j Pj is strong operator topology subseries convergent, there exists P0 ∈

PC(X, Y ) such that the series
∑∞

r=1

∑mjr

i=njr
Pi is strong operator topology con-

vergent to P0. Therefore, the series
∑∞

r=1

∑mjr

i=njr
y ′

kPi(x) converges to y ′
kP0(x)

uniformly for x ∈ B. Thus we have

sup
n

{∣∣∣∣∣
∞∑

r=1

mjr∑
i=njr

y ′
kPi(xn) − y ′

kP0(xn)

∣∣∣∣∣
}

= 0.

Note that {P0xn} ⊆ Y0 is obvious. Therefore, limk supn{|(y ′
k − y ′

0)P0(xn)|} =
0. It follows from Antosik–Mikusinski basic matrix theorem (Swartz, 1996) that

lim
k

sup
n

{∣∣∣∣∣
mk∑

i=nk

y ′
kPi(xn)

∣∣∣∣∣
}

= 0.

This contradicts to (2) and the sufficiency is proved.
Necessity. Let P be a bounded map from (X, ‖.‖) → (l1, ‖.‖1). For x ∈

X, denote Px = (P (x)j )∞j=1. Pick y ∈ Y, y 
= 0 and define Pj : X → Y for
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Pjx = P (x)j y. It is obvious that Pj ∈ PC(X, Y ). For each strictly increas-
ing sequence {kj } in N, let P0x = ∑

j P (x)kj
y. Then P0 ∈ PC(X, Y ) and

∑
j Pkj

is strong operator topology convergent to P0. So
∑

j Pkj
is uniform convergent to

P0. By the characteristic of compact sets in (l1, ‖.‖1) again that we can prove the
map P is a compact map. The Theorem is proved. �

3. AN INTERESTING EXAMPLE

Let (X, ‖.‖) be a Banach space. A series
∑

j xj in (X, ‖.‖) is said to be a weak
unconditionally Cauchy series if for each f ∈ X′, the series

∑
j |f (xj )| < ∞. We

may prove that
∑

j xj in (X, ‖.‖) is a weak unconditionally Cauchy series is equiv-
alent to for each (tj ) ∈ c0, the series

∑
j tj xj is convergent in (X, ‖.‖) (Aizpuru

and Perez-Fernandez, 2000), and if
∑

j xj in (X, ‖.‖) is a weak unconditionally
Cauchy series, then for each bounded subset B of c0, the set {∑j tj xj : (tj ) ∈ B} is
a bounded subset of X. If the series

∑
j xj in (X, ‖.‖) is norm topology subseries

convergent, then
∑

j xj is said to be unconditionally convergent. M. Gonzalez
and J.M. Gutierrez proved the following important conclusion (Gonzalez and
Gutierrez, 2000):

Lemma 3. Let P be a continuous polynomial operator of mappings (X, ‖.‖)
into (Y, ‖.‖). Then the following assertions are equivalent:

(B) Given a weak unconditionally Cauchy series
∑

j xj in (X, ‖.‖), if for
each bounded subset B of c0, the set {P (

∑
j tj xj ) : (tj ) ∈ B} is a rel-

atively compact subset of (Y, ‖.‖), then the series
∑

j xj in (X, ‖.‖) is
unconditionally convergent.

(D) If the sequence {xn} in (X, ‖.‖) is equivalent to the c0-basis, then there
exists a bounded subset B of c0 such that the set {P (

∑
j tj xj ) : (tj ) ∈ B}

is not relatively compact in (Y, ‖.‖).

It follows from Lemma 3 that if (X, ‖.‖) contains a copy of c0, then there
exists a continuous polynomial operator P : (X, ‖.‖) → (Y, ‖.‖) which is not a
compact polynomial operator. Thus, it follows from Lemmas 2 and 3 that we
have:

Theorem 2. Let (X, ‖.‖) and (Y, ‖.‖) be two Banach spaces. If each weak
operator topology subseries convergent series

∑
i Ti in P0(X, Y ) is also uniform

topology subseries convergent, then (X, ‖.‖) and (X′, ‖.‖) both contain no copy
of c0.

Since l2 is a Hilbert space and l2 = (l2)′ contain both no copy of c0, so the
following example shows that the converse of Theorem 2 does not hold.
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Example 1. Let X = l2 and define the polynomial operator P : l2 → l1 by
P ({tj }) = {t2

j }. Then P : l2 → l1 is a continuous polynomial operator which is
not a compact polynomial operator.

Example 1 showed that the following problem is important and difficult:

Problem 1. Characterize the Banach space (X, ‖.‖) such that each continuous
polynomial operator P : (X, ‖.‖) → (l1, ‖.‖1) is a compact polynomial operator.
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